skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "San_Roman, Magdalena"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Microorganisms in marine oxygen minimum zones (OMZs) drive globally impactful biogeochemical processes. One such process is multistep denitrification (NO3→NO2→NO→N2O→N2), which dominates OMZ bioavailable nitrogen (N) loss and nitrous oxide (N2O) production. Denitrification-derived N loss is typically measured and modeled as a single step, but observations reveal that most denitrifiers in OMZs contain subsets (“modules”) of the complete pathway. Here, we identify the ecological mechanisms sustaining diverse denitrifiers, explain the prevalence of certain modules, and examine the implications for N loss. We describe microbial functional types carrying out diverse denitrification modules by their underlying redox chemistry, constraining their traits with thermodynamics and pathway length penalties, in an idealized OMZ ecosystem model. Biomass yields of single-step modules increase along the denitrification pathway when organic matter (OM) limits growth, which explains the viability of populations respiring NO2and N2O in a NO3-filled ocean. Results predict denitrifier community succession along environmental gradients: Pathway length increases as the limiting substrate shifts from OM to N, suggesting a niche for the short NO3→NO2module in free-living, OM-limited communities, and for the complete pathway in organic particle-associated communities, consistent with observations. The model captures and mechanistically explains the observed dominance and higher oxygen tolerance of the NO3→NO2module. Results also capture observations that NO3is the dominant source of N2O. Our framework advances the mechanistic understanding of the relationship between microbial ecology and N loss in the ocean and can be extended to other processes and environments. 
    more » « less
    Free, publicly-accessible full text available December 24, 2025